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1.  INTRODUCTION 

Submarine sandbanks are prevalent worldwide and 
are common in the southern North Sea, western Eng-
lish Channel, Iroise Sea and Irish Sea. Sandbanks are 
oriented parallel to the main tidal current and can be 
10 km long and up to 10 m high. They can also be 
very stable (Le Bot et al. 2005, Van Lancker et al. 

2009), as revealed by studies performed in Belgium, 
where sandbank position did not change for centuries 
(De Moor 2002, Aernouts 2005). Nevertheless, sand-
banks are covered by smaller bedforms, such as mar-
ine dunes/sand waves and ripples, known for their 
high migration rate (Le Bot 2001). Sandy habitats can 
thus be dynamic environments at the local scale. Sev-
eral human activities occur within sandbank areas, 
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such as marine aggregate extraction (Poiner & Ken-
nedy 1984, Moulaert et al. 2007, Degrendele et al. 
2010) and fishing (ICES 2018). Even under the status 
of marine protected areas (MPAs), offshore sand-
banks are among the habitats most threatened by 
fishing due to their poor conservation status in Euro-
pean waters (Perry et al. 2022). As sandbanks are suit-
able habitats for other human activities, such as off-
shore wind farms, a considerable effort must be made 
to increase the knowledge of this ecosystem and its 
sensitivity. 

In the southern North Sea, sandbanks are charac-
terised by a remarkably high phytoplankton produc-
tion and by massive blooms of Phaeocystis globosa 
(Reigstad & Wassmann 2007, Karasiewicz et al. 2018, 
Karasiewicz & Lefebvre 2022) but a very low organic 
matter content (Robert et al. 2021). Despite the fact 
that high primary production can sustain the benthic 
ecosystem of sandbanks (Denis & Desroy 2008), the 
macrobenthic fauna exhibits very low species rich-
ness (5 to 12 species m–2) as well as low abundances 
(100 to 400 individuals m–2), depending on the study 
and the specific location (Desroy et al. 2003, Van 
Hoey et al. 2004). Robert et al. (2021) recently re -
vealed that macrobenthic communities vary depend-
ing on (1) the type of bedform (sandbank, barchan 
dune and transversal dune) and (2) the season 
(autumn and spring). However, species composition 
and diversity (including biological trait diversity) 
were relatively homogeneous within a given bedform, 
probably because of the high hydrodynamic activity 
in their study area. Apart from these studies, the eco-
system functioning of bedform areas remains largely 
unknown. To our knowledge, the benthic food web of 
sandbanks has, to date, never been investigated. 

Stable isotope analyses, and especially the light/
heavy isotopes ratio of C (δ13C) and N (δ15N), have 
been widely used to study marine food webs because 
they provide temporally integrated information about 
species’ diet and trophic position (from a few days to 
months; Vander Zanden et al. 2015). A biplot is gen-
erally drawn with δ13C values as a proxy of food 
source (Post 2002, Bearhop et al. 2004) and δ15N 
values as a proxy of trophic positions (Post 2002, Hus-
sey et al. 2014). One can consider this biplot as a pic-
ture of the isotopic niche (see Newsome et al. 2007), a 
derivative of the n-dimensional hypervolume that 
defines the ecological niche sensu Hutchinson (1957). 
Several univariate metrics have been proposed to 
describe its shape (Jackson et al. 2011, Layman et al. 
2012, Cucherousset & Villéger 2015) and the trophic 
positions within (Quezada-Romegialli et al. 2018). 
Mixing models can also be computed to assess the 

trophic links between food sources and consumers 
(Govan et al. preprint doi:10.48550/arXiv.2306.
07817). All these methods can be performed using the 
R statistical software (R Core Team 2013) and can be 
computed using a Bayesian approach which allows 
for statistical comparisons (Jackson et al. 2011, Que-
zada-Romegialli et al. 2018, Govan et al. preprint 
doi:10.48550/arXiv.2306.07817) between groups or 
communities, but also in relation to time and space. 

Based on a stable isotope analysis, the present 
study aims at investigating the benthic food web of 
sandbanks and its seasonal variations. Three null 
hypotheses were tested: 

H1. Sandbanks display a low number of trophic 
guilds with respect to the poor diversity of both mac-
robenthic (Desroy et al. 2003, Van Hoey et al. 2004, 
Breine et al. 2018, Robert et al. 2021) and fish species 
(Amara 2003, Ellis et al. 2011) found in sandbanks 
compared to areas without bedforms 

H2. Seawater particulate organic matter (wPOM) or 
freshly deposited wPOM are the main source of 
organic matter in the food web with respect to the 
remarkably high phytoplankton production in the 
southern North Sea (Lefebvre & Dezécache 2020) and 
the very low sedimentary particulate organic matter 
(sPOM) content (Robert et al. 2021) 

H3. The architecture of the food web, the isotopic 
composition of the main sources of organic matter, as 
well as the isotopic composition of the main trophic 
guilds, vary depending on the season due to a higher 
contribution of 13C-depleted terrestrially derived or -
ganic matter in autumn/winter. The selective use of 
heavy isotopes by primary producers, which induces 
a general 15N-depletion of the trophic web in spring/
summer as well as changes of species composition 
and changes in the relative contribution of the various 
trophic guilds, could also be responsible for seasonal 
variations. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

The present study focused on an 80 km2 area lo -
cated on the Flanders banks, offshore from Dunkirk 
harbour (Fig. 1). Because the study area is relatively 
far from large estuaries, freshwater inputs and terres-
trial organic matter inputs are considered negligible 
and mainly linked to small canals and runoffs from 
cliffs (Cap-Blanc Nez). 

The study area, and more generally the Southern 
Bight of the North Sea, consists of shallow waters, 
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with a maximum depth of 40 m. It is typified by a wide 
variety of bedforms, such as large sandbanks extend-
ing between 8 and 32 km in length and with a height 
of 15 to 20 m. In this area, benthic communities were 
investigated for the first time by Cabioch & Glaçon 
(1975) and then revisited by Davoult et al. (1988) and 
Desroy et al. (2003). A recent paper also describes 
how benthic ecosystem functioning varies with the 
type of bedform, the season and the position within a 
bedform (Robert et al. 2021). 

2.2.  Biological material collection 

Macrobenthic organisms (>1 mm) were collected 
with a Van Veen grab (0.1 m2) at 23 stations dis-
tributed between the trough and the crest of 3 kinds of 
bedform: a transversal dune, a barchan dune and a 
sandbank. Three stations were also localised in areas 
without bedforms (see Robert et al. 2021 for details). 
Three replicates per station were preserved in a 4% 
buffered formalin solution for abundance and bio-
mass measurements. Two additional replicates were 
also obtained at each station: 1 for the analysis of the 
stable isotope composition of the macrobenthic 
organisms and 1 for the stable isotope composition of 
the sediment. 

wPOM was collected in the water column with a Nis -
kin bottle, above each kind of dune and in the refer-
ence area. Megabenthic organisms (>10 mm) and fish 
were collected using a commercial trawl with a 
‘Grande Ouverture Vertical’, equipped with a re duced 
cod-end mesh of 20 mm, stretched in order to improve 
the catch of juveniles and small fish. A total of 26 trawl 
hauls were performed between the trough and the 
crest of 3 sandbanks (Fig. 1). Macrofauna, megafauna, 
fish and water samples for the analysis of stable iso-
topes were all frozen onboard at –20°C. This sampling 
strategy was set up both in autumn 2019 (October) and 
spring 2020 (May) in order to assess the seasonal 
variability of the benthic food web. 

2.3.  Sample processing and stable isotope analyses 

In the laboratory, all organisms (i.e. macrofauna, 
megafauna and fish) were quickly defrosted to avoid 
tissue breakdown. They were sorted, identified at 
species level, counted and weighed. The abundance 
and biomass were standardised by the sampling sur-
face. A total of 37 species contributing to more than 
90% of the biomass were selected for stable isotopic 
composition analyses (see Table 1). Fish were classified 
according to their sexual maturity (juveniles vs. adults). 
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Those with a high mobility were not considered as 
they could have been feeding beyond the location of 
the sandbank, mostly pelagic species (Sprattus sprattus 
and Trachurus trachurus) and demersal fish (Dicentrar-
chus labrax). The cephalopod Loligo vulgaris was also 
excluded for the same reasons. 

For each season, a maximum of 25 samples per 
species and size class (fish only) were dissected. 
Samples consisted of muscle tissue for most of the 
taxa (e.g. fish, crustaceans, echinoderms). For the 
smallest species, such as small annelids, it was often 
necessary to pool the whole body of several individ-
uals from the same species in order to reach the mini-
mum weight needed for isotope analyses (0.1 mg). All 
samples were finally rinsed with Milli-Q water, 
freeze-dried for 24 h and powdered manually. 

For the analysis of the stable isotope composition of 
sPOM, sediment samples were re-suspended in fil-
tered Milli-Q water using an ultrasonic bath. The 
supernatant was then filtered on pre-combusted 
(450°C for 5 h) GF/F filters. Seawater collected for 
wPOM was also sieved on pre-combusted GF/F filters. 

Samples partly composed of calcium carbonate 
(e.g. wPOM, sPOM, small ophiuroids, heart urchins, 
small crustaceans; see Table 1 for details) were split 
into 2 subsamples: one was acidified with 10% HCl for 
δ13C whereas the second remained untreated to avoid 
δ15N enrichment (Pinnegar & Polunin 1999). The δ13C 
values from acidified samples and the δ15N values 
from untreated subsamples were later combined to 
obtain valid isotope signatures (i.e. undisturbed by 
CaCO3 and acidification). Species that received this 
treatment are indicated in Table 1. 

Around 1 mg of powder was weighed for each sample 
and placed into tin capsules. Samples were analysed 
for isotopic composition at Cornell University (USA) 
using a Thermo Delta V isotope mass spectrometer in-
terfaced with a NC2500 elemental analyser. Several in-
house standards (CBT, KCRN and Deer) were used to 
test the instrument measurement variability or long-
term drift in the determination of elemental composi-
tion (quality control check). Standards were run once 
every 10 samples. All in-house standards were cali-
brated periodically against international standards to 
verify their accuracy. Within the runs, isotopic preci-
sion for QC standards was 0.2 ml–1 for nitrogen and 
carbon. Results from these calibrations are provided in 
Table S1 in the Supplement at www.int-res.com/
articles/suppl/m735p027_supp.pdf. 

The δ13C and δ15N values were determined by 
weighing the 13C:12C and 15N:14N ratios of a sample 
relative to those of standards (Vienna Pee Dee Belem-
nite for carbon and N2 in air for nitrogen): 

                                        (1) 

where iE  and  jE are the heavier (higher atomic mass 
i) and lighter (lower atomic mass j) isotopes of 
element E. The isotope iE in substance P was spec-
ified by iEP (see the guidelines and recommended 
terms for expression of stable isotope-ratio and gas-
ratio measurement results in Coplen 2011). The C/N 
ratios are shown in Table S2. 

2.4.  Data analyses 

2.4.1.  Potential sources of C and N 

Spatio-temporal variations. A permutational multi-
variate ANOVA (PERMANOVA, Anderson 2005) was 
used to determine whether the stable isotope com-
position of sPOM and wPOM varied in relation to the 
season, depth and distance from the coast. The PER-
MANOVA was computed using 1000 random iter-
ations and Euclidean distance as dissimilarity 
measure. Prior to this analysis, the homogeneity of 
group dispersions was tested using the betadisper 
function, implemented in the vegan package (Ok -
sanen 2010) of the R statistical software (R Core Team 
2013). The mean distance to the centroids in a princi-
pal coordinates analysis was used for this procedure 
(Anderson et al. 2006). 

Linear models of regressions were also used to pro-
vide a deeper insight into how δ13C and δ15N values of 
both wPOM and sPOM varied independently with 
seasons, depth and distance from the coast. A visual 
inspection of diagnostic plots was done in order to 
determine whether the conditions of application of 
the linear models were met. 

Basal resources contribution to the diet of primary 
consumers. A Bayesian stable isotope mixing model 
(SIMM) was computed to assess the relative con-
tributions of sPOM and wPOM as food sources for 
primary consumers (i.e. deposit feeders). The simmr 
package (Parnell & Inger 2019) was used to address 
this issue. Bayesian priors assumed an equal proba-
bility of each food source being consumed to avoid 
biased statistical inference. The simmr package 
implements mixing models via both Markov chain 
Monte Carlo (MCMC) algorithms and faster fixed 
form variational Bayes (FFVB). Because specific 
trophic discrimination factors (TDFs) between pri-
mary consumers and primary producers were un -
known, ‘generic’ values provided by the meta-analy-
sis of McCutchan et al. (2003) were employed. The 
TDFs between basal resources (wPOM and sPOM) 
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and primary consumers were set to 1.3 ± 0.3‰ for 
δ13C and 2.9 ± 0.32‰ for δ15N. 

A diagnostic procedure (see Govan et al. preprint 
doi:10.48550/arXiv.2306.07817 for details) was used 
for each of the computed models to check their ro -
bustness (not shown). In particular, the convergence 
(values in the diagnostics should all be close to 1; if 
not, a longer number of chains is recommended) and 
the posterior correlation between the sources (in gen-
eral, high correlations — negative or positive — are 
indicative of the model being unable to determine 
which food sources are being consumed, though the 
marginal standard deviations can still be narrow) 
were considered. 

One independent model was run for each season 
and seasonal differences were assessed by calculat-
ing the probability of Bayesian posterior distribution 
in autumn being smaller/larger than in spring. We 
assumed that a tendency occurred when the probabil-
ity of difference was between 75 and 95%. We con-
sidered that the seasonal difference was significant 
when the probability exceeded 95%. 

2.4.2.  Invertebrates and fish consumers 

Identification of trophic groups. Trophic groups 
were identified using existing databases such as 
BIOTIC for invertebrates (www.marlin.ac.uk/biotic/) 
and FishBase for fish (https://fishbase.mnhn.fr/). 
When the information was missing, the feeding mode 
was completed using data from peer-reviewed papers. 

The trophic position of each species was also calcu-
lated for each season via the Bayesian approach pro-
posed by Quezada-Romegialli et al. (2018) and imple-
mented in the tRophicPosition package. We used 
tissues of the suspension feeders Fabulina fabula, 
Donax vittatus and Spisula solida as baseline to obtain 
integrated isotopic values of primary producers (iso-
topic endpoints). We effectively considered that the 
stable isotope composition of potential sources of car-
bon and nitrogen (namely wPOM and sPOM) was 
very variable at a high frequency (in both space and 
time) which could mask the effects of the season 
(Vander Zanden & Rasmussen 1999). ‘Generic’ values 
provided by the meta-analysis of McCutchan et al. 
(2003) were also employed as TDF values in this 
analysis. 

In the Bayesian approach, the C and N composition 
of consumers, baselines and TDFs were modelled as 
random variables, each having a prior normal dis-
tribution on their means and a uniform prior distribu-
tion on their standard deviations, while trophic level 

was treated as a random parameter. The model was 
run independently for each season with 5 parallel 
chains for the model, 20 000 adaptive iterations (both 
before and after posterior sampling) and 20 000 iter-
ations discarded as burn in. 

Seasonal variations. A PERMANOVA (1000 random 
permutations, Euclidean distance) was used to assess 
the variations of the bivariate isotopic composition in 
relation to (1) the season, (2) the trophic group and (3) 
the interaction between both factors. The betadisper 
procedure was implemented to verify homogeneity of 
group dispersions. Three univariate indices of isotopic 
diversity developed by Layman et al. (2007) were then 
calculated at the scale of the community but also inde-
pendently for each trophic group: the δ15N range 
(NR), the δ13C range (CR) and the TA. NR was the dis-
tance between the 2 species with the most enriched 
and most depleted δ15N values (i.e. maximum δ15N − 
minimum δ15N). CR was the distance between the 2 
species with the most enriched and most depleted 
δ13C values (i.e. maximum δ13C − minimum δ13C). As 
suggested by Layman et al. (2007), a higher CR means 
that there is a diversification at the basis of the food 
web with a greater number of food sources. The TA is 
represented by the convex hull area encompassing all 
species in the δ13C–δ15N biplot. This measure is in-
dicative of the total amount of niche space filled by 
species. The TA is influenced by species with extreme 
positions on the δ13C and/or the δ15N axis. The 3 uni-
variate indices of Layman et al. (2007) were calculated 
following the Bayesian ap proach implemented by 
Jackson et al. (2011) in the SIBER package. They were 
calculated with 20 000 iterations from the MCMC 
simulation. Posterior estimates allowed statistical 
comparisons between the seasons. We applied the 
same rule to detect tendencies and statistical differ-
ences as we did for the Bayesian SIMM: we assumed 
that a seasonal tendency occurred at a probability be-
tween 75 and 95% and that a significant difference oc-
curred above 95% probability. 

3.  RESULTS 

3.1.  Potential sources of C and N 

3.1.1.  General characteristics 
 

The isotopic composition of wPOM was, on aver-
age, equivalent to –18.6 ± 1.8‰ (mean ± SD) and 
5.3 ± 3.6‰ for δ13C and δ15N, respectively. The iso-
topic composition of sPOM was –25 ± 1.5‰ and 
7.7 ± 3.4‰ for δ13C and δ15N, respectively. 
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3.1.2.  Variations depending on the season, depth 
and distance from the coast 

 
The PERMANOVA analysis revealed a significant 

effect of season on the multivariate stable isotope 
composition of wPOM (p = 0.003). Conducting a 
 linear regression model showed that δ13C values 
decreased significantly with increasing distance from 
the coast (p = 0.022; Fig. 2). Conversely, season (p = 
0.098) had no significant effect on the δ13C values. 
Significantly higher values of δ15N were observed in 
spring (7.8 ± 3.2‰) compared to autumn (2.6 ± 
1.5‰) (p = 0.005) but no effect of distance from coast 
(p = 0.403) was observed. 

A significant effect of season (PERMANOVA, p = 
0.001) as well as a significant interaction between the 
factor season and the distance from the coast (PER-
MANOVA, p = 0.003) were observed based on the 
multivariate stable isotope composition of sPOM. The 
linear regression models revealed a significant reduc-
tion of δ13C values of sPOM in spring (–25.5 ± 1.5‰) 
compared to autumn (–24.5 ± 1.3‰) (p = 0.016). The 
distance also had a negative effect on δ13C values 
(p = 0.011), regardless of the season. Season also 
negatively influenced the δ15N of sPOM, with lower 
values in spring (p < 0.001): the δ15N was 5.1 ± 1.8‰, 
whereas it was 9.8 ± 2.8‰ in autumn. A significant 
interaction between the factor season and the distance 
from the coast was also observed via the linear regres-
sion model (p = 0.004). In other words, the δ15N of 

sPOM increased in autumn as the distance from the 
coast increased, whereas it decreased with the dis-
tance in spring (Fig. 2). 

 
 

3.1.3.  Contribution to the diet of primary consumers 
 

The output of the Bayesian SIMM indicated that 
wPOM was the main contributor to the diet of deposit 
feeders. An overall contribution of up to 70% was 
found for wPOM against less than 30% for sPOM. 
Nevertheless, seasonal variations occurred (Fig. 3). 
Indeed, the contribution of sPOM declined from 29 
to 7% between autumn and spring and the contribu-
tion of wPOM increased from 71 to 93% between the 2 
seasons. 

3.2.  Invertebrates and fish consumers 

3.2.1.  Characteristics of trophic groups 
 

A total of 6 trophic groups were defined according 
to literature data in addition to the 2 groups of pri-
mary producers (wPOM and sPOM) (Fig. 4, Table 1). 
They differed in their isotopic composition from a 
multivariate point of view (PERMANOVA, p = 0.001). 

The suspension feeders Donax vittatus, Fabulina 
fabula and Spisula solida were grouped together and 
used as baseline for the calculation of the trophic 
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position of the other species. They represented 5% of 
the organisms caught during the present study (after 
standardisation by the sampling surface). The mean 
δ13C of this trophic group was –17.1 ± 0.9‰ whereas 
mean δ15N was 8.8 ± 1.6‰. 

Deposit feeders made up 83% of the biomass. They 
were comprised of 9 species: Bathyporeia pelagica, 
Echinocardium cordatum, Urothoe brevicornis, Telli-

mya ferruginosa, Magelona filiformis, Lanice conchil-
ega, Gastrosaccus spinifer, Pontocrates altamarinus 
and Ophelia borealis. Their average δ13C and δ15N 
values were 17.5 ± 1.2‰ and 9.9 ± 2.1‰, respect-
ively. B. pelagica, E. cordatum and U. brevicornis 
showed the lowest trophic positions, around 1, 
whereas T. ferruginosa, M. filiformis, L. conchilega, G. 
spinifer and P. altamarinus displayed a trophic posi-
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tion of around 1.5. O. borealis showed the highest 
trophic position, above 2, irrespective of season. 

Predator-scavengers represented almost 12% of the 
biomass and included 12 species: Pagurus bernhardus, 
Asterias rubens, Ophiura ophiura, Sigalion ma thildae, 
Carcinus maenas, Nephtys cirrosa, N. hombergii, Cran-
gon crangon, Liocarcinus holsatus, Thia scutellata, Pa-
laemon elegans and Glycera tridactyla. Their average 
isotopic composition was –16.8 ± 1.6‰ for δ13C and 
12.9 ± 1.8‰ for δ15N. Their trophic position varied 

greatly according to the species. Indeed, Pagurus 
bernhardus, A. rubens, O. ophiura and S. mathildae 
had a trophic position below 2, whereas Carcinus mae-
nas, N. cirrosa, N. hombergii, Crangon crangon, L. hol-
satus, T. scutellata and Palaemon elegans had a trophic 
position between 2 and 3. Finally, G. tridactyla ex-
hibited the highest trophic position among predator-
scavengers with a value above 3. 

Planktivorous fish made a low contribution to the 
food web with 0.03% of the recorded biomass. They 
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Trophic                Species                                                  Autumn                                             Spring 
 group                                                                                        δ13C                   δ15N             TP        n                 δ13C                   δ15N             TP        n 
 
wPOM                  wPOMa                                                 –18.0 ± 1.9        2.6 ± 1.5          /          8          –19.1 ± 1.6        7.8 ± 3.2          /          9 
sPOM                   sPOMa                                                  –24.5 ± 1.3        9.8 ± 2.8          /         24         –25.5 ± 1.5        5.1 ± 1.8          /         20 
Suspension         Donax vittatus                                    –18.2 ± 0.7        7.4 ± 1.7         na         3                     /                         /                  /          0 
 feeder                Fabulina fabula                                  –17.8 ± 0.3        7.7 ± 0.4         na         3          –16.6 ± 1.3        7.5 ± 2.5         na         3 
                               Spisula solida                                     –16.9 ± 0.6      10.3 ± 0.5        na         5          –16.6 ± 0.7        9.4 ± 0.8         na         6 
Deposit                Bathyporeia pelagica                       –16.8 ± 0.4        6.8 ± 1.0       1.01       7          –17.5 ± 0.6        7.3 ± 0.4       1.01       6 
 feeder                Urothoe brevicornis                          –16.3 ± 0.7        8.1 ± 0.9       1.01       7                     /                         /                  /          0 
                               Echinocardium cordatuma              –19.3 ± 1.8        8.4 ± 1.0       1.02       5            –19 ± 1.1         7.8 ± 1.4       1.03       5 
                               Tellimya ferruginosa                              –17.5                   9.3             1.29       1                     /                         /                  /          0 
                               Magelona filiformis                          –18.8 ± 0.4        9.9 ± 0.2       1.37       3                –18.7                   9.6             1.36       1 
                               Lanice conchilega                                   –17.4                   9.9             1.41       1                     /                         /                  /          0 
                               Gastrosaccus spinifer                       –17.7 ± 0.4      10.1 ± 1.3      1.46      15         –16.6 ± 1.0      11.6 ± 1.0      1.98      11 
                               Pontocrates altamarinus                 –19.1 ± 1.2      11.5 ± 0.5      1.94       4                     /                         /                  /          0 
                               Ophelia borealis                                –16.7 ± 0.9      12.3 ± 1.2      2.21       8          –17.4 ± 0.9      12.1 ± 0.9      2.14      10 
Predator–          Pagurus bernhardusa                              –15.5                   8.4             1.27       1                     /                         /                  /          0 
 scavenger         Asterias rubens                                  –21.2 ± 1.9      10.2 ± 0.7      1.50       6          –18.7 ± 0.9      11.2 ± 0.7      1.83       5 
                               Ophiura ophiuraa                               –17.8 ± 2.9      10.3 ± 2.5      1.50       5                –14.6                  12.9            2.52       1 
                               Sigalion mathildae                            –15.7 ± 0.3      11.4 ± 0.5      1.91       5                     /                         /                  /          0 
                               Carcinus maenas                               –16.6 ± 1.1      11.9 ± 0.4      2.07       3                     /                         /                  /          0 
                               Nephtys hombergii                            –16.6 ± 0.1      12.7 ± 0.9      2.37       4          –15.8 ± 1.0      13.4 ± 0.8      2.56       8 
                               Nephtys cirrosa                                  –17.4 ± 0.7      13.3 ± 1.3      2.53      20         –16.6 ± 0.6      11.9 ± 1.9      2.06      19 
                               Crangon crangon                              –16.0 ± 0.8      13.6 ± 0.7      2.65      16         –15.6 ± 0.4      14.2 ± 1.3      2.88       5 
                               Liocarcinus holsatus                         –16.2 ± 0.9      13.8 ± 1.0      2.73      15         –16.6 ± 1.1      14.1 ± 1.1      2.81      17 
                               Thia scutellataa                                        –19.7                  13.9            2.78       1                     /                         /                  /          0 
                               Palaemon elegans                             –15.7 ± 0.8      14.5 ± 1.7      2.99       3                     /                         /                  /          0 
                               Glycera tridactyla                              –16.3 ± 0.6      14.9 ± 1.0      3.08       4                     /                         /                  /          0 
Benthivorous     Arnoglossus laterna (small)            –16.7 ± 0.6      13.0 ± 0.3      2.43      15         –16.0 ± 0.6      13.5 ± 0.7      2.65       2 
 fish                      Pleuronectes platessa (small)         –17.2 ± 1.0      13.5 ± 0.9      2.60      22         –16.2 ± 0.9      12.7 ± 0.6      2.33       3 
                               Pleuronectes platessa (large)         –15.8 ± 0.6      13.5 ± 0.8      2.62       9                     /                         /                  /          0 
                               Solea solea (small)                             –16.7 ± 0.8      13.5 ± 1.0      2.62       7                     /                         /                  /          0 
                               Mullus surmuletus (small)               –17.0 ± 1.0      13.8 ± 1.1      2.67       7                     /                         /                  /          0 
                               Merlangius merlangus (small)       –17.3 ± 1.2      14.0 ± 0.9      2.79       9          –15.3 ± 0.9      14.5 ± 1.8      2.91       2 
                               Buglossidium luteum (small)          –16.7 ± 0.4      14.3 ± 0.4      2.87      22                   /                         /                  /          0 
                               Solea solea (large)                             –15.8 ± 0.4      14.4 ± 0.8      2.92       5                     /                         /                  /          0 
                               Buglossidium luteum (large)          –17.2 ± 0.3      14.5 ± 0.3      2.95       6          –17.4 ± 1.2      14.1 ± 0.9      2.83       5 
Planktivorous    Hyperoplus lanceolatus (small)     –19.0 ± 0.1      13.5 ± 0.1      2.61       2                     /                         /                  /          0 
 fish                     Ammodytes tobianus (large)                –16.3                  14.6            3.08       1          –16.2 ± 0.3      14.6 ± 0.4      3.00       4 
                               Hyperoplus lanceolatus (large)     –16.2 ± 0.2      15.8 ± 0.4      3.40       4          –15.8 ± 0.3      15.1 ± 0.1      3.20       6 
Piscivorous         Echiichthys vipera (small)               –16.8 ± 0.4      14.7 ± 0.4      2.99      25         –16.4 ± 0.4      14.4 ± 0.6      2.92       9 
 fish                     Echiichthys vipera (large)               –16.7 ± 0.3      15.7 ± 0.4      3.34       6          –16.6 ± 0.3      16.0 ± 0.6      3.50       7 
aδ13C composition is from acidified samples 

Table 1. Isotopic composition and characteristics of each species. The mode of the trophic position (TP) and the  δ13C and δ15N 
values (mean ± SD), as well as the number of samples per species (n) are provided for each season. na: not applicable
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were represented by 2 sand eel species: Hyperoplus 
lanceolatus (small and large individuals) and Ammo-
dytes tobianus (only large individuals were collected). 
They showed a mean δ13C of –16.4 ± 1‰ and a mean 
δ15N of 14.9 ± 0.7‰. Their trophic position was 
equivalent to 3.1. 

Benthivorous fish represented 0.18% of the biomass 
and were composed of 6 species: Arnoglossus laterna 
(only small individuals were collected), Pleuronectes 
platessa (small and large), Solea solea (small and 
large), Mullus surmuletus (only small), Merlangius 
merlangus (small) and Buglossidium luteum (small 
and large). Their isotopic composition was –16.8 ± 
0.9‰ for δ13C and 13.8 ± 0.9‰ for δ15N. All the ben-
thivorous fish had a trophic position just below 3. 

Piscivorous fish made up 0.02% of the biomass and 
were represented by a single species: Echiichthys 
vipera (large and small individuals). Its mean δ13C 
value was –16.7 ± 0.4‰, whereas the mean δ15N 
value was 15 ± 0.8‰. The trophic position of Echiich-
thys vipera was equivalent to 3.1. 

3.2.2.  Seasonal variations 
 

The biplot (Fig. 4) and the PERMANOVA analysis 
(not shown) did not reveal any significant seasonal 
effect at the scale of the community (p = 0.071) nor at 
the scale of each trophic group (not shown). From a 
univariate point of view, a seasonal trend was de -
tected: it was manifested by a decrease in the TA 
between autumn and spring, at the scale of the com-
munity (probability = 0.85). This effect was no longer 
detected when the univariate indices for each trophic 
group were calculated (probability < 0.75, irrespec-
tive of the indices and the trophic group). 

Seasonal variations were also relatively low regard-
ing the trophic position of each species (Fig. 5). A 
 significant trend (probability of 1 for each species 
hereafter) in the trophic position was detected for 
Gastrosaccus spinifer, Asterias rubens, O. ophiura, N. 
hombergii, C. crangon, L. holsatus, Arnoglossus lat-
erna (small), M. merlangus (small) and E. vipera 
(large). Con versely, a significant but small decrease 
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of trophic position was observed for Bathyporeia 
pelagica, Echinocardium cordatum, Magelona fili-
formis, Ophelia borealis, N. cirrosa, Ammodytes tobia-
nus (large), P. platessa (small), B. luteum (large) and E. 
vipera (small). 

4.  DISCUSSION 

The present study represents, to our knowledge, 
the first investigation of the benthic food web of sub-
tidal sandbank areas. It is expected that the sound 
scientific knowledge it provides will be useful for 
further understanding the ecological functioning of 
these habitats and depicting changes linked to 
anthropogenic pressures (including climate change). 

4.1.  Phytoplankton blooms are the main source of  
C and N in the benthic food web 

4.1.1.  The isotopic composition of food sources 
varies depending on the season and distance from 

the coast 
 

Higher δ13C values were recorded in autumn 
relative to spring, both for wPOM and sPOM. Lower 
δ15N values of wPOM were also observed in autumn. 
It is well known that carbon sources (and especially 
wPOM) display seasonal variations in their isotopic 
composition in marine, estuarine and freshwater sys-
tems (e.g. Zohary et al. 1994, France et al. 1997, Boua-
ziz et al. 2021) so that our results were consistent with 
those of several other studies. Carbon and nitrogen 
enrichments are generally due to the selective con-
sumption of dissolved inorganic carbon (DIC) and 
dissolved inorganic nitrogen (DIN) during phyto-
plankton blooms: 12C and 14N are primarily consumed 
while 13C and 15N accumulate. Some studies also sug-
gest that an increase in δ13C results from reduced iso-
topic fractionation at high cell densities or growth 
rates, or in relation to day length (Zohary et al. 1994, 
France et al. 1997, Brandenburg et al. 2022). A shift in 
the species composition can also be responsible for 
seasonal variations of δ15N values, because nitrogen 
isotope composition can vary greatly among phyto-
plankton taxa (Vuorio et al. 2006) and because a 
larger proportion of heterotrophic organisms usually 
induces higher δ15N values of wPOM (Agurto 2007, 
Aberle et al. 2010). 

In general, terrestrial organic matter has lower δ13C 
and δ15N values relative to marine organic matter 
(Vizzini et al. 2005), which can induce an increase in 

the isotopic ratio toward the offshore. Here, both 
wPOM (in both spring and autumn) and sPOM (in 
spring only) showed higher values close to the coast 
compared to offshore stations, which is a different 
trend compared to what is usually observed (see Viz-
zini et al. 2005). Three processes could be re sponsible 
for these results. First, due to particular hydrody-
namic conditions in sandbank areas, water masses 
with a terrigenous origin can occur in the offshore 
area, whereas the coastal area may exhibit marine 
characteristics. Secondly, it is possible that the 13C- 
and 15N-enrichment in the coastal area results from 
pollution and contaminants released by the manufac-
turing industries, primarily metallurgical, chemical 
and petrochemical, that surround Dunkirk (Dewaru-
mez & Davoult 1997, Desroy et al. 2003). Thirdly, it is 
possible that the isotopic composition of sPOM varies 
depending on the substrate, in relation to the biogeo-
chemical process. In the Tagus estuary, Sampaio et al. 
(2010) found that sediment grain size might act as a 
confounding factor in the analysis of nitrogen: areas 
with finer sediments showed the highest δ15N values. 
Hence, it is possible that fine changes in sediment 
grain size occur at the scale of our study area and that 
they induce higher isotopic ratios of sPOM closer to 
the coast than at the offshore stations. 

 
 

4.1.2.  Importance of bentho–pelagic coupling 
 

The outputs of the mixing models clearly indicated 
that wPOM is the main source of carbon and nitrogen 
in the benthic food web. The southern North Sea is 
typified by high phytoplankton production and 
unusually large blooms between March and June 
(Scha pira et al. 2008). Their intensity and species 
composition vary from one year to another but the 
dominant species are generally Phaeocystis globosa 
(Prymnesiophyceae) and the diatoms Chaetoceros 
sp., Thalassionema nitzschioides, Paralia marina, Gui-
nardia striata, G. delicatula and Rhizosolenia imbri-
cata, as well as the diatom Skeletonema costatum 
(Lefebvre et al. 2011). During massive Phaeocystis 
blooms, chlorophyll a concentrations in the water col-
umn may reach values up to 50 μg l–1, which can even 
change water viscosity (Seuront et al. 2006). The 
decline of the bloom is characterised by massive foam 
formation that accumulates on the shore. Based on 
results from the present study and existing knowl-
edge, one can hypothesise that the wPOM is mainly 
composed of phytoplankton cells that induce a large 
injection of carbon and nitrogen into benthic eco-
systems (Alderkamp et al. 2007) in this area where 
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other primary producers — macroalgae and micro-
phytobenthos — are considered absent due to high 
water turbidity. This is in line with the observations 
made by Franco et al. (2008) in permeable and fine 
grain depositional sediments of the Southern Bight of 
the North Sea. The results from the present study are 
also in accordance with those of Kopp et al. (2015) in 
the eastern English Channel, where stronger ben-
thic–pelagic coupling was found in shallow coastal 
areas, mostly due to a reorganisation of the upper 
consumers relative to 2 trophic pathways, benthic car-
bon sources being available to pelagic consumers 
and, reciprocally, pelagic sources becoming access-
ible to benthic species. 

The permeable sediments of sandbanks generally 
display a low organic matter content due to the trans-
port of organic particles (e.g. detritus and faecal pel-
lets) in the superficial sediments (Volkenborn et al. 
2007) by advective pore-water flows (Huettel & Rusch 
2000) and other physical process (see the review by 
Santos et al. 2012). In the studied area, the organic 
matter content effectively remained below 0.5% and 
decreased with distance from the coast along with the 
median grain size (Robert et al. 2021), which probably 
explains the minor influence of sPOM in the benthic 
food web. In this context, it is possible that deposit 
feeders were selected according to their ability to 
feed on wPOM rather than sPOM. For this reason, it is 
difficult to distinguish between suspension and 
deposit feeders by their stable isotope composition 
(Kang et al. 2015). 

4.2.  A very simplistic food web structure 

The mass ratio hypothesis suggests that the 
influence of a species on key ecosystem functions is 
proportional to its biomass (Garnier et al. 2004, 2007, 
Vile et al. 2006, Mokany et al. 2008). From this prin-
ciple, one can hypothesise that the food web of sand-
banks is very simple because most of the biomass 
belonged to 3 trophic groups only: deposit feeders, 
predator-scavengers or suspension feeders. This 
simple food web also bears similarities with the macro -
tidal sandy beaches of the Bay of Douarnenez (Brit-
tany, France) described by Quillien et al. (2016). 
Although the authors did not split species into trophic 
guilds and macroalgae were not present in our study 
area, ther isotopic biplot was very similar to that of the 
present study. Our results are also consistent with 
those of Nordström et al. (2009) in a study conducted 
in sandy bays of the Åland Islands (Baltic Sea), where 
21 macrobenthic species were found, split into 3 

trophic guilds. Sandbanks are covered by marine 
dunes and megaripples, known to migrate at a high 
frequency (Ernstsen et al. 2004, Ferret et al. 2010, 
Bolle et al. 2013): in the Dunkirk area, dune move-
ments range between 53.40 and 64.45 m yr–1 in the 
coastal area and between 18.53 and 54.58 m yr–1 in the 
offshore area (M. Bary pers. comm.). Two recent 
studies, based on a biological traits analysis (BTA), 
suggested that such natural disturbance could 
severely limit the number of ecological niches (Breine 
et al. 2018, Robert et al. 2021). Our findings corrobor-
ate this assumption, showing that only a low number 
of trophic niches can coexist in such dynamic 
environments. Due to this very simple food web struc-
ture, one can hypothesise that natural or anthropo-
genic disruptions may strongly affect the ecosystem 
functioning of sandbank areas (low resistance) be -
cause removing a single trophic guild may have cas-
cading effects on the entire ecosystem. In contrast, 
the ecosystem may have a very high resilience capac-
ity because only a low number of trophic guilds need 
to recover in order to provide a complete recovery of 
the food web. 

The method of Quezada-Romegialli et al. (2018) 
revealed intra-group variations in the trophic position 
of species. It also pointed out some contradictions 
between the feeding mode and the trophic position of 
certain species, suggesting that their feeding mode is 
poorly known or that their diet varies from one habitat 
to another. Indeed, the polychaete Ophelia borealis, 
considered a non-selective deposit-feeder that swal-
lows sediment with its everted proboscis (Parapar et 
al. 2021), had a trophic level above 2, equivalent to 
certain predators. The ecology of O. borealis is poorly 
understood, but Fauchald & Jumars (1979) believe 
that the opheliids can, to some extent, select their 
food sources. Nevertheless, all species have the same 
general habit, in that they all ingest sediment for the 
contained organic matter. It is thus possible that O. 
borealis focuses on an N-enriched food source, but a 
more in-depth study of its feeding ecology should be 
performed. 

Asterias rubens, Ophiura ophiura and Pagurus bern-
hardus had a trophic position below 2, which is not 
consistent with their predator and/or scavenger 
behaviour (Allen 1983, Ramsay et al. 1997, Ruiz 2022). 
Instead, they display a trophic position equivalent to 
that of deposit feeders (e.g. Gastrosaccus spinifer, 
Magelona filiformis). Although little documented, it 
seems that, in some cases, P. bernhardus could be a 
filter feeder (Gerlach et al. 1976, Babu 1988) and/or a 
deposit feeders (Orton 1927). Similarly, a review by 
Ruiz (2022) indicates that the diet of O. ophiura may 
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depend on food availability. It can probably feed on 
detritus such as plant debris and organically enriched 
sediments when food is limited. It is thus possible that 
species with a certain degree of feeding plasticity 
switch toward organic matter deposits because their 
preferential food source is very limited on sandbanks. 

Glycera tridactyla had a remarkably high trophic 
position, equivalent to that of certain fish such as 
Echiichthys vipera and Hyperoplus lanceolatus. Only 
large individuals of G. tridactyla were observed dur-
ing the present study. They could potentially feed on 
large prey thanks to their strong jaws connected to 
venom glands (Böggemann 2002). The venom pro-
duces a variety of neurotoxic effects in both verte-
brates and invertebrates (von Reumont et al. 2014). 

 
 

4.3.  Seasonal variations 
 

Seasonal changes in the isotope composition of 
higher trophic-level organisms are generally smaller 
than those of short-lived autotrophs (Cabana & Ras-
mussen 1996, Nordström et al. 2009). Low variation 
has thus been described for benthic invertebrates 
(Vizzini & Mazzola 2003, Carlier et al. 2007, Nord-
ström et al. 2009) and fish (Sarà et al. 2002, Vizzini & 
Mazzola 2003, Timmerman et al. 2020). In the Baltic 
Sea, Cabana & Rasmussen (1996) and Nordström et al. 
(2009) showed that the δ15N values of invertebrates 
and benthivorous predators were lowest in the middle 
of summer, particularly in August. At the La Palme 
Lagoon (northwestern Mediterranean), Carlier et al. 
(2007) observed a decrease in mean δ13C values in 
spring relative to autumn. Our findings suggest that 
similar seasonal variations occur on sandbanks. The 
decline in TA between autumn and spring was at the 
community scale. According to Layman et al. (2007), 
such a response suggests a lower feeding diversity, 
smaller trophic niches and a lower feeding redun-
dancy. The massive ingestion of phytoplankton 
material in spring and the higher contribution of 
wPOM to the diet of primary consumers may explain 
this result. The lower range of δ13C and δ15N values of 
primary consumers could then cascade through the 
food web, affecting the stable isotope composition of 
the whole community. 

5.  CONCLUSION 

Sandbanks host a very simple particular food web, 
largely supported by phytoplankton production. 
Results indicate that, with the exception of food 

sources (wPOM and sPOM), the structure of the ben-
thic food web is relatively well conserved over differ-
ent seasons. This stability in an area of intense natural 
disruption suggests that the benthic food web is able 
to recover quickly after an anthropogenic disruption, 
for instance during the installation of submarine 
cables (see Taormina et al. 2018 for a comprehensive 
review of the potential impact of wind farm installa-
tion). However, additional investigations of the sand-
bank food web would be necessary to validate this 
hypothesis. Future studies should now focus on other 
issues such as the potential role of sandbanks as 
nursery areas for several fish species. Among other 
questions, they need to determine whether food is a 
limit ing factor, if juveniles compete for food and 
space on sandbank and if they grow faster than in 
other estuarine or coastal nursery grounds. 
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